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Machine learning based energy-free structure
predictions of molecules, transition states,
and solids
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The computational prediction of atomistic structure is a long-standing problem in physics,

chemistry, materials, and biology. Conventionally, force-fields or ab initio methods determine

structure through energy minimization, which is either approximate or computationally

demanding. This accuracy/cost trade-off prohibits the generation of synthetic big data sets

accounting for chemical space with atomistic detail. Exploiting implicit correlations among

relaxed structures in training data sets, our machine learning model Graph-To-Structure

(G2S) generalizes across compound space in order to infer interatomic distances for out-of-

sample compounds, effectively enabling the direct reconstruction of coordinates, and thereby

bypassing the conventional energy optimization task. The numerical evidence collected

includes 3D coordinate predictions for organic molecules, transition states, and crystalline

solids. G2S improves systematically with training set size, reaching mean absolute intera-

tomic distance prediction errors of less than 0.2 Å for less than eight thousand training

structures — on par or better than conventional structure generators. Applicability tests of

G2S include successful predictions for systems which typically require manual intervention,

improved initial guesses for subsequent conventional ab initio based relaxation, and input

generation for subsequent use of structure based quantum machine learning models.
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The prediction of three-dimensional (3D) structures from a
molecular graph is a universal challenge relevant to many
branches of the natural sciences. Elemental information

and 3D coordinates of all atoms define a system’s electro-
nic Hamiltonian, and thereby all related observables which can be
estimated as expectation values of approximate solutions to the
electronic Schrödinger equation. Energy and force estimates are
frequently used to relax the atomic positions on the potential
energy surface in order to locate structural minima1,2. The many
degrees of freedom and various levels of theory for describing
potential energy surfaces make structure predictions challenging.
The problem is aggravated by the combinatorially large number
of possible conformational isomers (cf. Levinthal’s paradox3), i.e.
local minima mapping to the same graph. Often, only low energy
conformations are desired, e.g., as practically relevant starting
configurations to a chemical reaction4, or as binding poses in
computational drug design5, requiring conformational scans to
identify or rank the most promising representative candidate
geometries. While feasible for few and small systems, con-
formational scans of larger subsets of chemical compound
space remain computationally prohibitive.

State of the art approaches for generating 3D molecular
structures e.g., ETKDG6 and Gen3D7 are very efficient yet carry
significant bias since they are based on mathematically rigid
functional forms, empirical parameters, knowledge-based heur-
istic rules, and do not directly improve upon the increase of
training data set sizes. While applicable to known and well-
behaved regions of chemical compound space, these methods lack
generality and are inherently limited when it comes to more
challenging systems, such as carbene molecules or transition
states (TS). Recent generative machine learning developments
might hold promise since they can produce structural candidates
to solve inverse molecular design problems8–12. Unfortunately,
however, they have not yet been used to tackle the 3D structure
prediction problem, to the best of our knowledge.

To address the 3D structure with modern supervised learning,
we introduce the Graph To Structure (G2S) model. While any
other regressor, such as deep neural networks and alike might
work just as well, we rely for simplicity on kernel ridge regression
(KRR) for G2S in order to predict all elements in the pairwise
distance matrix of a single atomic configuration of an out-of-
sample molecule or solid. From the pairwise distance matrix,
atomic coordinates can easily be recreated. As query input, G2S
requires only bond-network and stoichiometry-based informa-
tion (see Fig. 1a). By exploiting correlations among data-sets
free of conformational isomers (restriction to constitutional and
compositional isomers only is necessary to avoid ambiguity), G2S
learns the direct mapping from chemical graph to that structural
minimum that had been recorded in the training data set (which
is assumed to be generated in consistent ways), thereby bypassing
the computationally demanding process of energy-based con-
formational search and relaxation.

We have evaluated G2S on QM structures of thousands of
constitutional isomers, singlet state carbenes, E2/SN2 transition
states (TS), and elpasolite crystals. After training on sufficiently
many examples, we find that G2S generated structures for out-of-
sample graphs not only have a lower root-mean-square deviation
(RMSD) than structures from ETKDG6 and Gen3D7 (for the
closed-shell molecules for which the latter are applicable) but also
exhibit high geometric similarity to the reference quantum che-
mical structure. Further numerical evidence suggests the applic-
ability of G2S to the prediction problem of transition state
geometries, singlet carbene structures, and crystalline solids. We
also use G2S to generate coordinates for previously unchar-
acterized molecules in the QM9 dataset16 that can be used as
input for subsequent QM-based relaxations, or for QML based

property predictions. Not surprisingly, analysis of G2S results
indicates that interatomic distances between atoms that share
strong covalent bonds are easier to learn than between distant
atoms which affect each other only through intramolecular non-
covalent interactions.

Results
G2S performance. We report G2S performance curves for heavy
atom coordinates (not hydrogens) of constitutional isomers,
carbenes, TS, and elpasolite structure predictions in Fig. 2. For all
data sets and representations studied, root-mean-square devia-
tions of reconstructed geometries of out-of-sample input graphs
decrease systematically with training set size. For all QM9 based
sets (isomers and carbenes), the bond length and bond hop
representations yield systematic improvements with the lowest
offset. While bond order exhibits a similar slope, its offset how-
ever is markedly higher. This difference is likely due to bond
order encoding substantially less explicit information. Note that
graph CM and Bag of Bonds (BoB) representation, both yielding
better learning curves for atomization energies due to their
inverse distance format17, perform both worse than the bond
length representation. Since geometry is directly proportional to
distance (and not inversely such as energy), this trend is therefore
consistent with the literature findings. The performance of graph
CM and BoB for the TS is rather disappointing, but it is in line
with trends among machine learning models of the activation
energy, already discussed in ref. 18. If one had to select just one
representation, the authors would recommend the bond length
representation, which encodes changes in stoichiometry through
element-pair specific bond lengths, and which performs best on
average (see Table 1 and Fig. 2).

For the TS based performance curves, similar trends are
observed with the exception of the bond order representation
now resulting in the most accurate G2S model. This is in line with
the findings in ref. 18 where the simple one-hot-encoding
representation outperforms more physics based representations
when it comes to the prediction of activation energies. It is an
open question if and how the physics of TS can be properly
accounted for within a representation.

From the curves on display in Fig. 2a, it is clear that G2S
delivers similar performance no matter if Lewis structures of target
systems are well defined or not. For comparison, empirical
structure prediction methods ETKDG7 and Gen3D6 and have also
been applied to the isomer sets (application to carbenes and TS is
not possible since these methods are restricted to systems with
valid Lewis structure formulas). Their RMSD from QM9
geometries is reached by G2S after training on over 4000 struc-
tures. In addition to their quantitative limitations, ETKDG and
Gen3D were respectively in 15 and 1.5% of the cases for C7O2H10,
and 6.3 and 19% for C7NOH11 not able to generate a structure
from given SMILES at all. This indicates that structure generation
can be a challenge for empirical methods, even when it comes to
simple closed shells and small organic molecules. Note how the
constant slope of the G2S performance curves suggests that even
lower prediction errors should be possible for larger training sets.
The kinks in the performance curves of the carbene data set result
from noise in the DGSOL prediction when solving the distance
geometry problem: Actual learning curves of interatomic distances
are smooth for all data-sets (see Supplementary Figs. 2–6).

In complete analogy to predicting pairwise atomic distances in
molecules, G2S can be trained to predict the pairwise distance of
atomic sites in a crystal. Due to the dependence on the size of the
unit cell, pairwise distances are predicted in fractional coordinate
space instead of Cartesian coordinates, and an additional G2S
model is trained to predict the lattice constant, based on the exact
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same representation of stoichiometry (FLLA). The performance
in Fig. 2b indicates, just as for the molecular cases, systematically
decaying prediction errors with growing training set size.

To gain an overview, we also report the best mean absolute and
root-mean-square errors for G2S models after training on the
largest training set sizes available in Table 1). Mean absolute

errors of less than 0.2Å are obtained in all cases. Exemplary
predicted structures, drawn at random and superimposed with
their reference, are on display for all molecular data sets in Fig. 3.
Visual inspection confirms qualitative to quantitative agreement,
the largest deviations corresponding to conformational isomers
which can be expected to exhibit small energy differences.

Based on the promising performance of G2S, we have also
assessed its performance for 3054 uncharacterized molecules
which had failed the QM9 generation protocol16. To revisit the
problem of predicting the geometries for these uncharacterized
molecules, G2S has been trained on 5000 randomly chosen QM9
molecules (varying constitution and composition), and used to
predict coordinates for each of them. Subsequent geometry
optimization at a B3LYP/6-31G(2df,p) level of theory showed
successful convergence of 90% of them (a random selection of
unconverged molecules can be seen in Supplementary Fig. 7). A
similar success rate has been reached with Gen3D6 and Open-
Babel. Figure 3f depicts randomly drawn structures together with
the respective structural formula. At a B3LYP level of theory, 92%
of the uncharacterized molecules are expected to converge to a
local minimum, which makes G2S a viable initial guess for ab
initio structure relaxation19.

Fig. 1 Schematic of the G2S workflow and QM9 constitutional isomer dataset. a From left to right: molecules in the training set are separated into heavy
atoms and hydrogens and featurized with a given representation. During training, one machine is used for each pairwise distance. For the prediction of new
structures, only molecular connectivity is needed, which can be provided e.g. via SMILES13 or SELFIES14. The machines predict all pairwise distances. The
full 3D geometry is then reconstructed using DGSOL15 for heavy atoms and a Lebedev sphere optimization scheme for hydrogen atoms. b Example isomers
and distance matrix distributions of the C7O2H10 QM9 constitutional isomer dataset. The sorting of the atoms and the distance matrix is dependent on the
sorting of the molecular representation (example shown for the bond length representation). c Energy distribution and principal moments of inertia of the
C7O2H10 and C7NOH11 dataset.

Table 1 Accuracy of the best performing representation for
each dataset at maximum training set size Ntrain and for test
set size Ntest specified.

Ntrain Ntest MAE [Å] RMSD [Å] Representation

C7O2H10 4876 1219 0.14 0.44 Bond hop
C7NOH11 4687 1172 0.12 0.42 Bond length
E2 TS 1344 335 0.15 0.42 Bond length
SN2 TS 2228 556 0.19 0.44 Bond order
Carbenes 4004 1002 0.13 0.38 Bond length
Elpasolite 8472 1528 0.16 0.15 FLLA

Mean absolute error (MAE) of interatomic distances and root-mean-square-deviation (RMSD)
calculated for heavy atoms only.
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From G2S output to QM relaxation. Assessing the usefulness
of structure prediction models can be challenging. While from
a machine learning perspective, naturally the error is calcu-
lated w.r.t. the test dataset (Fig. 4 error type A), energy-based
optimization methods are typically evaluated by their devia-
tion from the closest minimum of a higher level of theory
structure (Fig. 4 error type B). Since G2S is trained on
quantum-based structures, it should inherently be able to
predict structures close to the minimum of the used reference
method, and should therefore be a useful tool for the auto-
matized generation of meaningful initial structure guesses
which can subsequently be used as input in energy-based
convergence of the geometry.

We have relaxed the test sets of the C7NOH11 constitutional
isomer set and the as E2/SN2 reactant set using G2S output (with
bond length representation) as an input for subsequent
semiempirical GFN2-xTB20 for both, as well as DFT (B3LYP)
and post-Hartree–Fock (MP2) based relaxation, respectively. The
resulting performance curves are shown in Fig. 5 and, again,
indicate systematic improvement with training set size, reaching
even PM621 (semiempirical quantum chemistry) level of theory
for error type B of the reactants.

The results for error type A in Fig. 5 (blue curves), however,
show that subsequent QM based structure relaxation does not
necessarily lead to further improvement for the reactants. While
the constitutional isomers improve by almost 0.1Å, the E2/SN2
reactants tend to get worse. A possible explanation for this
counterintuitive trend is that the conformational space of the E2/
SN2 reactants is limited to a single dihedral, and once a structure

is predicted by G2S to be in the wrong conformational minimum,
further structure relaxation may even increase the error.

Overall, however, G2S predicted input structures result in
geometries closer to the minimum of the respective reference
method than that of a semiempirical method (Fig. 5 orange
curves). In the case of C7NOH11 isomers, the respective error
between GFN2-xTB and B3LYP is only 0.13Å, which could
explain an almost equal average distance to both minima. A
detailed overview of baseline errors of different methods is given
in Supplementary Table 1.

From G2S output to QML predictions. The availability of
molecular structures is not only a problem for molecular simu-
lations, but also for structure-based machine learning of mole-
cular quantum properties22. In order to push the boundary in the
exploration of chemical space, either a graph-based model is
required, or 3D structures have to be generated. In the case of the
latter, the generated structure should be close to the level of
theory of the training data in order to avoid large prediction
errors. G2S enables us to circumvent this problem by allowing
structure-based machine learning models to be trained on pre-
dicted structures. Thereby, the property predicting machines
learn to compensate the noise of G2S structures, which allows for
the future query structures to originate from G2S.

In order to quantify the usefulness of G2S for this problem, we
have used G2S output coordinates without further geometry
optimization as an input to standard QML representations such as
FCHL1823, FCHL1924, or BoB25. We have focussed on the
prediction of atomization and formation energies of constitutional

Fig. 2 Systematic improvement of predictive G2S accuracy with increasing training data for all data sets studied. Performance curves show mean heavy
atom root-mean-square deviation (RMSD) of G2S generated structures (with different representations). a Performance curves of isomers, carbenes, and
transition states (TS). Insets depict exemplary Lewis structures of each dataset. Horizontal lines show mean RMSD of generated structures with ETKDG7

and Gen3D6 from SMILES. b Performance curves of the elpasolite dataset using the FLLA representation. Top, mid, and bottom panels depict prediction
errors for unit cell length, interatomic distances, and coordinates. The inset illustrates the AlNaK2F6 elpasolite crystal.
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isomers and elpasolites, respectively. In Fig. 6, we compare the
resulting performance curves to standard QML machines that had
access to the “true” reference coordinates as input, as well as to
QML machines that used topology only (input graphs for G2S) as
input (see Supplementary Fig. 8 for QML learning curves). Again,
we note that all performance curves improve systematically with
training set size. For atomization energy prediction of C7O2H10

and C7NOH11 isomers, G2S and FCHL19 still reaches an accuracy
of 5 kcal/mol mean absolute error (MAE) at 1024 training points,
slowly approaching the coveted chemical accuracy of 1 kcal/mol,
and almost matching the accuracy of a DFT structure-based BoB
model. Using ETKDG/UFF based geometries as test structures, the
performance curves indicate an increasing discrepancy between
ETKDG/UFF geometries and energy. The sensitivity of the
FCHL19 representation leads, in that regard, to large prediction
errors, whereas for small training sizes the BoB representation
seems to be more robust. On average, and as one would expect,
performance curves improve as one goes from topology only to
G2S to QM coordinates as input for QML. The advantage is most
substantial for the small training set, in the limit of larger data sets,
the performance curves of predictions based on G2S input level
off, presumably due to the noise levels introduced by aforemen-
tioned error type B, i.e., inherent noise and conformational effects
of the predicted structures.

Comparing the impact of the molecular QML representations,
the familiar trend that FCHL is more accurate than BoB, is
reproduced for either input22.

For crystals, conformational effects do not exist, which is the
reason why FLLA performs almost comparably well to FCHL18
trained on the original structures. Nevertheless, G2S with
FCHL18 still reaches an accuracy of 0.3 eV/atom MAE in
training set sizes of less than 1000 points.

Fig. 3 Exemplary structures generated with G2S (cyan) for all molecular datasets. Reference structures are shown in green with corresponding heavy
atom root-mean-squared deviation. Panels a, b constitutional isomers C7O2H10 and C7NOH11, respectively. c, d correspond to E2 and SN2 transition states
TS with attacking/leaving groups shown as beads, respectively. Panel e Carbenes. f Five exemplary structures out of the 90% successful predictions of the
3054 uncharacterized QM9 molecules.

Fig. 4 Illustration of the structure/conformer prediction problem. The
quality of predicted structures can be quantified in two ways. Error A: the
overall accuracy of the machine learning model to reproduce a specific
configuration is measured. Error B: Relaxing a predicted structure, the error
w.r.t. the closest minimum is calculated, allowing one-to-one comparisons
with energy-based structure optimization methods.
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While the G2S based predictions for the training sets specified
are not yet comparable to state of the art QML models, an
advantage over standard approaches is the generation of new
query structures. While 3D structures are available only for a tiny
fraction of chemical space, molecular graphs are abundant and
can be enumerated systematically26. Especially when manual
intervention and expensive optimization methods are required,
the generation of new target structures becomes almost as
difficult as generating the training data itself. In short, a regular
QML query requires a structure to be generated with a force field
method followed by geometric optimization. Compute times for
the respective steps in this workflow are as follows: ETKDG (4
ms), Gen3D (143 ms), GFN2-xTB (257 ms), PM3 (280 ms), DFT
(minutes) median timings for C7O2H10 molecules on a AMD
EPYC 7402P CPU). G2S circumvents this procedure by
producing structures within 50 ms that can directly be used with
a QML model, resulting in orders of magnitude speedups
compared to the conventional way (Fig. 6d).

Analysis and limitations. The analysis of machine learning
predictions is crucial in order to better understand the G2S
model. Figure 7 reports the distribution of predicted (largest
training set) and reference distances for the C7NOH11 data. We
note that, as expected from the integrated results discussed above,
the predicted distance distribution overlaps substantially with the
respective reference distribution. Small deviations indicate that
G2S slightly overestimates covalent bond lengths, and that it
underestimates distances to third neighbors. The density differ-
ences for second neighbors can hardly be discerned.

The scatter error heat-map plot of predicted versus reference
distances (Fig. 7b) indicates the absence of major systematic
errors (in line with remarkably good averages), but reveals a
larger variance for distances larger than 2.5Å. A plausible reason
for this could be the natural flexibility of molecular structures for
flat and long compounds (as opposed to systems dominated by
cage-like connectivities). This explanation is corroborated by the
trend observed among individual MAE obtained for each distance
pair of the distance matrix of C7NOH11 (Fig. 7c): The larger the
distance the larger error. As mentioned, the sorting of the
representation and distance matrix depends on the norm of the
feature values of each row, naturally sorting larger distances to
higher indices for the bond length representation. Such prediction
errors can then lead to the generation of the wrong conformer, or
even diastereomer.

A potential solution could be the decomposition of the full
distance matrix into sub-block-matrices containing only close
neighbor distances. Conceptually similar to how local atomic
representations in QML work, the position of an atom would only
depend on the distances of the closest four atoms, allowing its
relative position to be uniquely defined. Furthermore, the
scalability of G2S would be improved since instead of n(n− 1)/
2 machines for nheavy atoms, only four machines per atom are
necessary. Furthermore, since G2S relies on only a single kernel
inversion and short representations, the scalability is expected to
improve through kernel approximations or efforts in learning
efficiency such as the atoms in molecules (AMONS27) approach.
However, it has to be highlighted that the depicted structures in
Fig. 3 have been generated with less than 5000 training molecules
available. To that end, the linear trend of the logarithmic learning
curves indicates that more data will still improve the accuracy,
meaning that fundamentally the learning capability of G2S has
not yet achieved its full potential. An improvement in accuracy
would make the solution to the distance geometry problem less
ambiguous and, therefore, would lead to fewer cases of
conformer/diastereomer misclassifications.

In order to further explore the role of the target format, we
have also attempted to build machine learning models of entries
in the Z-matrix. However, the Z-matrix-based predictions did not
improve over the distance matrix-based model estimates (see
Supplementary Method I.B.). Possible further strategies to
improve on G2S could include Δ-machine learning28 where
deviations from tabulated (or universal force-field based)
estimates are modeled.

Discussion
We have presented G2S, a machine learning model capable of
reconstructing 3D atomic coordinates from predicted interatomic
distances using bond-network and stoichiometry as input. The
applicability of G2S has been demonstrated for predicting
structures of a variety of system classes including closed-shell
organic molecules, transition state geometries, singlet carbene
geometries, and crystal structures. G2S learning curves indicate
robust improvements of predictive power as training set size

Fig. 5 Performance curves of G2S predicted structures after subsequent
geometry optimization runs. Blue lines measure the RMSD w.r.t. a
quantum-based reference structure (Fig. 4 error type A). Orange lines
measure the RMSD w.r.t. G2S predicted structures after a structural
relaxation (Fig. 4 error type B). All G2S predictions have been performed
using the bond length representation. a C7NOH11 constitutional isomers
optimized with GFN2-xTB and B3LYP/6-31G(2df,p), respectively. b E2/SN2
reactants optimized with GFN2-xTB and MP2/6-311G(d), respectively. The
level of theory has been chosen according to the method used in each
dataset.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24525-7

6 NATURE COMMUNICATIONS |         (2021) 12:4468 | https://doi.org/10.1038/s41467-021-24525-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


www.manaraa.com

increases. Training on less than 5000 structures already affords
prediction errors of less than 0.2Å MAE in interatomic distances
for out-of-sample compounds—without saturation of the learn-
ing curve. We find that G2S predicts chemically valid structures
with high geometric similarity towards out-of-sample reference
geometries. Our error analysis has identified prediction errors of
interatomic distances to be the largest for atoms that are the
farthest apart, explaining the possibility of substantial deviations
in terms of torsional angles or diastereomers. Comparison to
empirical popular structure generators (ETKDG and Gen3D)

indicates that G2S predictions, within their domain of applic-
ability, are on par or better—already for modest training set sizes.
We have explored the limits of G2S by also considering geome-
tries of unconventional chemistries such as singlet carbene sys-
tems, transition state, or crystalline solids which might be
problematic for conventional empirical structure generators. The
usefulness of G2S has been illustrated by (a) resolving structures
for 90% of the 3054 uncharacterized molecules mentioned in the
QM9 database with subsequent ab initio based geometry relaxa-
tion, and (b) generating coordinate input for subsequent training
of structure-based machine learning predictions of quantum
properties, such as atomization energies, reaching prediction
errors with hybrid DFT quality.

We believe that a solely data-driven approach is appealing, due
to its inherent capability to further improve and generalize across
chemical compound space as more training data is being made
available. Our extensive numerical evidence suggests that the G2S
approach is capable of successfully predicting useful structures
throughout chemical compound space and independent of pre-
defined rules or energy considerations. Effectively, G2S accom-
plishes the reconstruction of atomistic detail from a coarsened
representation: The graph of a compound. Our results for elpa-
solites, transition states, and carbenes already demonstrate that
G2S can be trained and applied across differing stoichiometries
and sizes. However, given the size and complexity of chemical
space, a one fits all solution will just result in a substantially larger
model. In that sense, we believe that it is also of significant
advantage that G2S adapts already to certain chemical subspaces
of interest, and can then be put to good use in that domain.
Future work could deal with applications to coarse-grained
simulations, Boltzmann averaging or extend above efforts to
predict more transition state geometries.

Methods
Kernel ridge regression (KRR). We rely on kernel-based methods which have
shown promise in predicting quantum properties throughout chemical compound
space after training on sufficient data22,29–31. Developed in the 1950s, kernel
methods learn a mapping function from a representation vector x to a target
property y32,33.

Fig. 6 Systematic improvement of energy prediction accuracy with increasing training data. G2S predictions (blue), as well as DFT structures (orange)
and ETKDG/UFF structures (red), have been used as inputs to QML models. a, b atomization energy prediction of C7O2H10 and C7NOH11 constitutional
isomers, respectively. c Prediction of formation energies of elpasolite crystals. d Speedup estimate of a G2S (blue) or ETKDG/UFF (red) based QML model
over a DFT dependent QML model. This assumes an average of 16 DFT optimization steps required before a structure can be used in QML.

Fig. 7 Analysis of G2S distance predictions of C7NOH11 constitutional
isomers. For all predictions, G2S was used with the bond length representation
and a maximal training set size (4687). aHistograms of B3LYP reference (blue)
and G2S predicted distances (orange). b Hexbin heatmap visualization of
B3LYP reference and predicted distances. c Heatmap of MAE for each entry of
predicted distance matrix.
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G2S attempts to predict interatomic distances in a sorted distance matrix. The
focus on the prediction of internal degrees of freedom facilitates the learning
process because of rotational, translational, and index invariance. Note that the
subsequent reconstruction of the Cartesian coordinates from a complete set of
noisy interatomic distances is straightforward (see below). Within G2S, the
interatomic distance target label y between any pair of atoms I and J is defined as

yG2SIJ ðxÞ ¼ ∑
N

i
αðIJÞi kðxi; xÞ ð1Þ

with αi being the i-th regression coefficient, xi being the representation of the i-th
molecule in the training set, and k being a kernel function to quantify the similarity
of two molecules. The regression coefficients α are obtained from reference
interatomic distances yref according to the standard KRR training procedure.

αIJ ¼ ðKþ λIÞ�1yrefIJ ð2Þ
with a regularization coefficient λ and the identity matrix I. The regularization
strength λ is dependent on the anticipated noise in the data and has been
determined by hyperparameter optimization. Note that while each interatomic
distance matrix element IJ is predicted by a separate G2S model (Eq. 1), formally
the training for all models requires only one matrix inversion (Eq. 2). In this sense,
G2S represents a single kernel/multi-property KRR model34.

In practice, we have simply relied on repeated Cholesky decomposition as
implemented in QMLcode35.

To relate the molecular representations via a similarity measure, a kernel
function k has to be chosen, as for example,

kðxi; xjÞ ¼ exp � jjxi � xjjj1
σ

� �
ð3Þ

kðxi; xjÞ ¼ exp � jjxi � xjjj22
2σ2

 !
ð4Þ

Equations (3) and (4) represent Laplacian and Gaussian kernel functions,
respectively, a standard choice in KRR based QML36. While index-dependent
representations can benefit from Wasserstein norms37, we enforce index invariance
by sorting (see below), and have therefore only used either L1 (Laplacian) or L2
(Gaussian) norm.

We optimize the hyperparameters σ, λ with different choices of kernel function
(Gaussian or Laplacian) and representation by using a grid-search and nested
fivefold cross-validation. The performance of all models has been tracked in terms
of MAE of all distances, as well as RMSD38–40.

To assess the generalizing capability of G2S for various representations, kernels,
and data-sets the test error has been recorded in terms of training set size N. The
relationship between the test error of a machine learning method in dependence of
training set size N, a.k.a. learning curve, is known to be linearly decaying on a
logarithmic scale41, which facilitates assessment of learning efficiency and
predictive power.

Graph-based representations. We use bond order matrices to define molecular
graphs, with elements being {0, 1, 2, 3} for bond types none, single, double, and
triple, respectively (bond order). For disconnected molecular graphs, e.g., TS, a
fully connected graph between attacking/leaving groups and reaction centers is
assumed. We have also used a denser way to describe the connectivity of a molecule
by counting the number of bonds between atoms following the shortest connecting
path (bond hop). These representations capture the connectivity of a molecule but
neglect information about atom types. To incorporate atomic information as well
as a form of spatial relationship, we weigh the total bond length lij on the shortest
path between atoms i and j by covalent atomic radii taken from refs. 42–44 (bond
length). We have introduced more physics (decreasing off-diagonal magnitude
with increasing distance) by adapting the Coulomb matrix29 (CM) representation
using the bond length l in the following form,

graphCMij ¼
0:5Z2:4

i ; i ¼ j;
ZiZj

lij
; i≠ j:

(
ð5Þ

with nuclear charges Z (graph CM). The two-body bag form of the CM, BoB25, was
shown to yield improved quantum property machine learning models, and has also
been adapted correspondingly for this work (graph BoB). A more detailed
description of the representations is provided in Supplementary Methods I.A.

We canonicalize the order of atoms in the representation and distance matrix
by sorting the atoms such that ∣∣xi∣∣ ≤ ∣∣xi+1∣∣ with xi being the i-th row. Due to the
use of L1 and L2 norms as metrics in the kernel, the canonicalization process is
necessary in order to guarantee that the representation and distance matrix is
invariant to the initial order of atoms. Depending on the graph representation, this
can lead to an implicit sorting of the distance matrix that is easier to learn, e.g., by
sorting short ranges together (Fig. 1b). For the graph BoB representation, distances
are ordered similar to the atom-wise binning procedure of BoB.

While the bonding pattern varies for molecules, we presume solids in the same
crystal structure to share a fixed adjacency matrix implying that they can solely be
described by stoichiometry. The FLLA45 representation, introduced for Elpasolite

crystals in 2016, exploits this fact by describing each representative site n solely by
the row (principal quantum number) and column (number of valence electrons) in
the periodic table resulting in an (2n-tuple), with sites being ordered according to
the Wyckoff sequence of the crystal. In 2017, and using a similar representation,
Botti and coworkers have studied the stability of perovskites with great success46

Workflow. The training of G2S starts with the separation of heavy atoms and
hydrogens from the target molecules (Fig. 1a). We generate the heavy atom scaffold
first, followed by saturating all valencies with hydrogens. This leads to the scaffold
and hydrogen training being independent problems.

After the separation, the input’s molecular bonding patterns have to be
featurized into a fixed size graph representation. To learn the pairwise distance
matrix, we use one model per distance-pair, resulting in n(n− 1)/2 machines to be
trained. This limits the size of any query molecule to at most n heavy atoms
(matrices for smaller molecules are padded with zeros). For hydrogens, only the
distances to the four closest heavy atom neighbors (not forming a plane) are being
considered, requiring four machine learning models. This working hypothesis is
consistent with the observation that the deprotonation of small molecules typically
only involves local electron density changes47, making only local geometries
predominantly important.

In order to predict interatomic distances for out-of-sample molecules (Fig. 1a),
only information about the bonding pattern and nuclear charges is required, e.g.,
by providing a simplified molecular-input line-entry system13 (SMILES) or
SELFIE14 string. RDKit is used to generate the corresponding adjacency matrix
from which we construct the representation.

To convert the predicted interatomic distances to 3D coordinates, the distance
geometry problem48 has to be solved. For heavy atoms, we use DGSOL15, a robust
distance geometry solver that works with noisy and sparse distance sets.

After reconstructing the heavy atom coordinates, all valencies are saturated by
placing hydrogens on a spherical surface provided by a Lebedev49 sphere. Note that
solving the distance geometry problem is independent from G2S, any other
approach could have been used just as well.

Regarding the elpasolite crystal structure predictions and in order to allow the
conversion from fractional to Cartesian coordinates, an additional machine has
been trained to also predict the unit cell length of each stoichiometry. By learning
the length of the unit cell with an additional machine, fractional coordinates can
then be converted back to Cartesian coordinates.

Data. To assess G2S, several quantum-based datasets containing structures of
closed shell, singlet carbenes, transition state geometries, as well as elpasolite crystal
structures have been considered. The QM9 database16 has already served as an
established benchmark and recently has been used to test generative machine
learning models8–12. All QM9 molecules were optimized at the B3LYP/6-31G(2df,
p)50–55 level of theory. From QM9, the largest subsets of constitutional isomers, i.e.,
6095 and 5859 molecules with C7O2H10 and C7NOH11 sum formula, respectively,
have been selected for this work. Note that already pure constitutional isomers
(fixed composition) constitute a difficult target since similar molecular graphs can
lead to vastly different 3D geometries. Figure 1 illustrates three exemplary mole-
cules, as well as distance, energy, and moments of inertia distributions for both
constitutional isomer sets. As evident from inspection of the latter, the molecular
shapes tend to be long and flat with few spherical structures.

In order to push G2S to its limits, systems without well-defined Lewis structures
have been considered as represented by two distinct and recent data sets: Carbene
and TS geometries. The QMspin56 database reports over 5’000 singlet and triplet
carbene structures (derived through hydrogen abstraction of molecules drawn at
random from QM9), for which common structure generation methods would
require manual intervention. These structures were optimized using CASSCF57–59

in a cc-pVDZ-F1260 orbital basis, and aug-cc-pVTZ60 density fitting basis. We
have used all singlet state carbene structures for the training and testing of G2S.

We have also trained and tested G2S on thousands of TS geometries from the
QMrxn204 dataset. QMrxn20 consists of C2H6 based reactant scaffolds, substituted
with -NO2, -CN, -CH3, -NH2, -F, -Cl, and -Br functional groups, for which E2/SN2
reaction profiles were obtained using MP2/6-311G(d)61–65 level of theory.

Regarding solids, we have relied on the elpasolite data-set corresponding to
10,000 training systems made up from main-group elements45. All crystal
structures had been relaxed using DFT (PBE) with projector augmented wave
pseudopotentials45,66,67.

Finally, we have also extracted the list of 3054 SMILES of “uncharacterized”
molecules from the QM9 database, for which the structure generation and B3LYP
geometry optimization procedure had led to a mismatch with initial Lewis
structures.

Structure generation and optimization. The ETKDG7 method in RDKit version
2019.09.3 and the Gen3D6 method in Open Babel version 3.0.0 have been used to
generate 3D structures from SMILES. As a baseline, B3LYP/6-31G(2df,p) struc-
tures of the constitutional isomers and MP2/6-311G(d) E2/SN2 reactants have been
optimized with UFF68, MMFF69–75, GFN2-xTB20, and PM621, respectively (see
Supplementary Table 1). Structure relaxations at the B3LYP/6-31G(2df,p) or MP2/
6-311G(d) level of theory have been performed using ORCA version 4.076,77. PM3
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and PM6 calculations have been performed using MOPAC201678. If not stated
otherwise, no further geometry relaxation with any of the methods has been per-
formed after structures have been generated.

Data availability
The QM9 constitutional isomer data used in this study is available in the QM9 database
at https://doi.org/10.6084/m9.figshare.c.978904.v5. The QMspin and QMrxn databases
used in this study are available in the materialscloud database at https://doi.org/10.24435/
materialscloud:2020.0051/v1 and https://doi.org/10.24435/materialscloud:sf-tz,
respectively. The elpasolite dataset used in this study is available as part of the
supplemental information at https://doi.org/10.1103/PhysRevLett.117.135502.

Code availability
A static implementation of Graph-To-Structure is available at https://doi.org/10.5281/
zenodo.4792292. The distance geometry solver DGSOl is available at https://www.mcs.
anl.gov/~more/dgsol/.
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